
src Documentation
Release 0.1

Author

Jan 21, 2018

General

1 Features 3

2 Philosophy 5

3 Testing 7

4 Contributing 9

5 License 11

6 Definitions 13
6.1 Class . 13
6.2 Object . 13

7 Sorting Algorithms 15

8 Indices and tables 17

Python Module Index 19

i

ii

src Documentation, Release 0.1

• General

A repository collecting in one place everything I think can be useful to keep one’s Pythonic zen even in the toughest
job interviews, and more importantly to become a better Python Developer.

General 1

src Documentation, Release 0.1

2 General

CHAPTER 1

Features

The idea is to cover:

• Definitions of fondamental concepts of Object Oriented programming and Python

• Best coding practices and examples

• Description of important packages

• Common structures and algorithms

• Common coding interview questions

3

src Documentation, Release 0.1

4 Chapter 1. Features

CHAPTER 2

Philosophy

It is originally intended to be notes for myself but I release it in the hope it will be helpful for others. I will try my best
to update it regularly and stick to the best practices.

5

src Documentation, Release 0.1

6 Chapter 2. Philosophy

CHAPTER 3

Testing

The code is tested with pytest. To run them:

cd path-to-repository/src/
pytest

To get more info about coverage and such:

pytest --cov-report term-missing --cov=. --verbose

Continuous Integration testing is done by Travis

7

src Documentation, Release 0.1

8 Chapter 3. Testing

CHAPTER 4

Contributing

Any help is always appreciated and if you have any suggestions or improvement, do not hesitate to create a ticket/pull
request. Thank you very much for your interest in Pythonic Interviews.

9

src Documentation, Release 0.1

10 Chapter 4. Contributing

CHAPTER 5

License

• Definition, tutorials and documentation licensed under CC BY-SA 4.0.

• Code source distributed under MIT license

11

https://creativecommons.org/licenses/by-sa/4.0/legalcode

src Documentation, Release 0.1

12 Chapter 5. License

CHAPTER 6

Definitions

Here will be defined in pythonic terms a few key aspects of Object Oriented programming.

6.1 Class

6.2 Object

13

src Documentation, Release 0.1

14 Chapter 6. Definitions

CHAPTER 7

Sorting Algorithms

Module containing the most common sorting algorithms

• bubble sort

• selection sort

• insertion sort

• shell sort

• quicksort

• merge sort

• heapsort

For the record, Python built-in sorted uses by default timsort which is a hybrid stable sorting algorithm, running in
O(n) for best case (list already sorted) to O(n log n). It does so by taking advantage of the fact that real-life lists often
have some partial ordering.

src.classic_algo.sort.bubble_sort(a)
In this algo, the i-th pass starts at the first element and compare sequencially each element to the next, swapping
them if necessary, up to n-i. The biggest element ‘bubbles up’ to the n-i position. This runs in O(n^2): n-1
passes of O(n) comparisons.

Note the use of the pythonic swap operation “a, b = b, a”, not requiring the use of a temporary storage variable.

src.classic_algo.sort.heap_sort(list_to_order)

src.classic_algo.sort.insertion_sort(a)
The insertion sort uses another strategy: at the i-th pass, the i first terms are sorted and it inserts the i + 1 term
where it belongs by shifting right all elements greater one notch right to create a gap to insert it. It also runs in
O(n^2)

src.classic_algo.sort.merge(a, b)
helper function used by merge_sort combines two sorted lists into one sorted list

src.classic_algo.sort.merge_sort(a)
Based on the divide and conquer approach, this algorithm runs in O(n log n). The array is split by the middle

15

src Documentation, Release 0.1

and each half is recursively sorted using merge_sort. The two sorted halves are then efficiently merged using
the helper function above.

src.classic_algo.sort.partition_helper(a, first, last)
A left_mark index are initiated at the leftmost index available (ie not the pivot) and a right_mark at the rightmost.
The left_mark is shifted right as long as a[left_mark] < pivot and the right_mark left as long as a[right_mark] >
pivot. If left_mark < right_mark, the values at which the marks are stopped are swaped and the process continues
until they cross. At this point, a[right_mark] and the pivot are swapped and the index of the right_mark is
returned.

src.classic_algo.sort.quick_sort(a)
Another divide and conquer algorithm, quick sort relies on choosing a pivot value. The list is then partitioned
using the scheme described in partition_helper. This placed the pivot in its correct position in the sorted list, the
function is then called on the sublist a[:right_mark - 1] and a[right_mark+1:]

src.classic_algo.sort.quicksort_helper(a, first, last)
Helper function splitting the list at the pivot and recursively calling itself on the left and right parts of this
splitpoint.

src.classic_algo.sort.selection_sort(a)
Swapping values can be an expensive operation. At the i-th pass, the selection sort finds the largest values and
swap it with the value at n - i performing faster than bubble sort. Note this can be shortened same as above (not
shown here for clarity)

src.classic_algo.sort.shell_sort(list_to_order)

src.classic_algo.sort.short_bubble_sort(a)
Variant of the short bubble, taking advantage of the fact we know that if no value has been swaped, the list is
sorted and we can return early.

16 Chapter 7. Sorting Algorithms

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

17

src Documentation, Release 0.1

18 Chapter 8. Indices and tables

Python Module Index

s
src.classic_algo.sort, 15

19

src Documentation, Release 0.1

20 Python Module Index

Index

B
bubble_sort() (in module src.classic_algo.sort), 15

H
heap_sort() (in module src.classic_algo.sort), 15

I
insertion_sort() (in module src.classic_algo.sort), 15

M
merge() (in module src.classic_algo.sort), 15
merge_sort() (in module src.classic_algo.sort), 15

P
partition_helper() (in module src.classic_algo.sort), 16

Q
quick_sort() (in module src.classic_algo.sort), 16
quicksort_helper() (in module src.classic_algo.sort), 16

S
selection_sort() (in module src.classic_algo.sort), 16
shell_sort() (in module src.classic_algo.sort), 16
short_bubble_sort() (in module src.classic_algo.sort), 16
src.classic_algo.sort (module), 15

21

	Features
	Philosophy
	Testing
	Contributing
	License
	Definitions
	Class
	Object

	Sorting Algorithms
	Indices and tables
	Python Module Index

