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• General

A repository collecting in one place everything I think can be useful to keep one’s Pythonic zen even in the toughest
job interviews, and more importantly to become a better Python Developer.
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CHAPTER 1

Features

The idea is to cover:

• Definitions of fondamental concepts of Object Oriented programming and Python

• Best coding practices and examples

• Description of important packages

• Common structures and algorithms

• Common coding interview questions
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4 Chapter 1. Features



CHAPTER 2

Philosophy

It is originally intended to be notes for myself but I release it in the hope it will be helpful for others. I will try my best
to update it regularly and stick to the best practices.

5



src Documentation, Release 0.1

6 Chapter 2. Philosophy



CHAPTER 3

Testing

The code is tested with pytest. To run them:

cd path-to-repository/src/
pytest

To get more info about coverage and such:

pytest --cov-report term-missing --cov=. --verbose

Continuous Integration testing is done by Travis
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CHAPTER 4

Contributing

Any help is always appreciated and if you have any suggestions or improvement, do not hesitate to create a ticket/pull
request. Thank you very much for your interest in Pythonic Interviews.
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CHAPTER 5

License

• Definition, tutorials and documentation licensed under CC BY-SA 4.0.

• Code source distributed under MIT license
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CHAPTER 6

Definitions

Here will be defined in pythonic terms a few key aspects of Object Oriented programming.

6.1 Class

6.2 Object
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CHAPTER 7

Sorting Algorithms

Module containing the most common sorting algorithms

• bubble sort

• selection sort

• insertion sort

• shell sort

• quicksort

• merge sort

• heapsort

For the record, Python built-in sorted uses by default timsort which is a hybrid stable sorting algorithm, running in
O(n) for best case (list already sorted) to O(n log n). It does so by taking advantage of the fact that real-life lists often
have some partial ordering.

src.classic_algo.sort.bubble_sort(a)
In this algo, the i-th pass starts at the first element and compare sequencially each element to the next, swapping
them if necessary, up to n-i. The biggest element ‘bubbles up’ to the n-i position. This runs in O(n^2): n-1
passes of O(n) comparisons.

Note the use of the pythonic swap operation “a, b = b, a”, not requiring the use of a temporary storage variable.

src.classic_algo.sort.heap_sort(list_to_order)

src.classic_algo.sort.insertion_sort(a)
The insertion sort uses another strategy: at the i-th pass, the i first terms are sorted and it inserts the i + 1 term
where it belongs by shifting right all elements greater one notch right to create a gap to insert it. It also runs in
O(n^2)

src.classic_algo.sort.merge(a, b)
helper function used by merge_sort combines two sorted lists into one sorted list

src.classic_algo.sort.merge_sort(a)
Based on the divide and conquer approach, this algorithm runs in O(n log n). The array is split by the middle
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and each half is recursively sorted using merge_sort. The two sorted halves are then efficiently merged using
the helper function above.

src.classic_algo.sort.partition_helper(a, first, last)
A left_mark index are initiated at the leftmost index available (ie not the pivot) and a right_mark at the rightmost.
The left_mark is shifted right as long as a[left_mark] < pivot and the right_mark left as long as a[right_mark] >
pivot. If left_mark < right_mark, the values at which the marks are stopped are swaped and the process continues
until they cross. At this point, a[right_mark] and the pivot are swapped and the index of the right_mark is
returned.

src.classic_algo.sort.quick_sort(a)
Another divide and conquer algorithm, quick sort relies on choosing a pivot value. The list is then partitioned
using the scheme described in partition_helper. This placed the pivot in its correct position in the sorted list, the
function is then called on the sublist a[:right_mark - 1] and a[right_mark+1:]

src.classic_algo.sort.quicksort_helper(a, first, last)
Helper function splitting the list at the pivot and recursively calling itself on the left and right parts of this
splitpoint.

src.classic_algo.sort.selection_sort(a)
Swapping values can be an expensive operation. At the i-th pass, the selection sort finds the largest values and
swap it with the value at n - i performing faster than bubble sort. Note this can be shortened same as above (not
shown here for clarity)

src.classic_algo.sort.shell_sort(list_to_order)

src.classic_algo.sort.short_bubble_sort(a)
Variant of the short bubble, taking advantage of the fact we know that if no value has been swaped, the list is
sorted and we can return early.
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CHAPTER 8

Indices and tables

• genindex

• modindex

• search
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Python Module Index

s
src.classic_algo.sort, 15
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