

	General

General

	Welcome to Pythonic Interviews
	Features

	Philosophy

	Testing

	Contributing

	License

	Definitions
	Class

	Object

	Sorting Algorithms

Indices and tables

	Index

	Module Index

	Search Page

Welcome to Pythonic Interviews

A repository collecting in one place everything I think can be useful to keep one’s Pythonic zen even in the toughest job interviews, and more importantly to become a better Python Developer.

Features

The idea is to cover:

	Definitions of fondamental concepts of Object Oriented programming and Python

	Best coding practices and examples

	Description of important packages

	Common structures and algorithms

	Common coding interview questions

Philosophy

It is originally intended to be notes for myself but I release it in the hope it will be helpful for others. I will try my best to update it regularly and stick to the best practices.

Testing

The code is tested with pytest. To run them:

cd path-to-repository/src/
pytest

To get more info about coverage and such:

pytest --cov-report term-missing --cov=. --verbose

Continuous Integration testing is done by Travis

[image: build-status]

Contributing

Any help is always appreciated and if you have any suggestions or improvement, do not hesitate to create a ticket/pull request.
Thank you very much for your interest in Pythonic Interviews.

License

	Definition, tutorials and documentation licensed under CC BY-SA 4.0 [https://creativecommons.org/licenses/by-sa/4.0/legalcode].

	Code source distributed under MIT license

Definitions

Here will be defined in pythonic terms a few key aspects of Object Oriented programming.

Class

Object

Sorting Algorithms

	Module containing the most common sorting algorithms

	
	bubble sort

	selection sort

	insertion sort

	shell sort

	quicksort

	merge sort

	heapsort

For the record, Python built-in sorted uses by default timsort which
is a hybrid stable sorting algorithm, running in O(n) for best case
(list already sorted) to O(n log n). It does so by taking advantage of
the fact that real-life lists often have some partial ordering.

	
src.classic_algo.sort.bubble_sort(a)

	In this algo, the i-th pass starts at the first element and compare
sequencially each element to the next, swapping them if necessary, up to
n-i. The biggest element ‘bubbles up’ to the n-i position. This runs in
O(n^2): n-1 passes of O(n) comparisons.

Note the use of the pythonic swap operation “a, b = b, a”, not requiring
the use of a temporary storage variable.

	
src.classic_algo.sort.heap_sort(list_to_order)

	

	
src.classic_algo.sort.insertion_sort(a)

	The insertion sort uses another strategy: at the i-th pass, the i first
terms are sorted and it inserts the i + 1 term where it belongs by shifting
right all elements greater one notch right to create a gap to insert it.
It also runs in O(n^2)

	
src.classic_algo.sort.merge(a, b)

	helper function used by merge_sort
combines two sorted lists into one sorted list

	
src.classic_algo.sort.merge_sort(a)

	Based on the divide and conquer approach, this algorithm runs in O(n log n).
The array is split by the middle and each half is recursively sorted using
merge_sort. The two sorted halves are then efficiently merged using the
helper function above.

	
src.classic_algo.sort.partition_helper(a, first, last)

	A left_mark index are initiated at the leftmost index available (ie
not the pivot) and a right_mark at the rightmost. The left_mark is shifted
right as long as a[left_mark] < pivot and the right_mark left as long as
a[right_mark] > pivot. If left_mark < right_mark, the values at which the
marks are stopped are swaped and the process continues until they cross.
At this point, a[right_mark] and the pivot are swapped and the index of the
right_mark is returned.

	
src.classic_algo.sort.quick_sort(a)

	Another divide and conquer algorithm, quick sort relies on choosing a pivot
value. The list is then partitioned using the scheme described in
partition_helper. This placed the
pivot in its correct position in the sorted list, the function is then
called on the sublist a[:right_mark - 1] and a[right_mark+1:]

	
src.classic_algo.sort.quicksort_helper(a, first, last)

	Helper function splitting the list at the pivot and recursively calling
itself on the left and right parts of this splitpoint.

	
src.classic_algo.sort.selection_sort(a)

	Swapping values can be an expensive operation. At the i-th pass, the
selection sort finds the largest values and swap it with the value at n - i
performing faster than bubble sort. Note this can be shortened same as
above (not shown here for clarity)

	
src.classic_algo.sort.shell_sort(list_to_order)

	

	
src.classic_algo.sort.short_bubble_sort(a)

	Variant of the short bubble, taking advantage of the fact we know that if
no value has been swaped, the list is sorted and we can return early.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 src	

 	
 	
 src.classic_algo.sort	

Index

 B
 | H
 | I
 | M
 | P
 | Q
 | S

B

 	
 	bubble_sort() (in module src.classic_algo.sort)

H

 	
 	heap_sort() (in module src.classic_algo.sort)

I

 	
 	insertion_sort() (in module src.classic_algo.sort)

M

 	
 	merge() (in module src.classic_algo.sort)

 	
 	merge_sort() (in module src.classic_algo.sort)

P

 	
 	partition_helper() (in module src.classic_algo.sort)

Q

 	
 	quick_sort() (in module src.classic_algo.sort)

 	
 	quicksort_helper() (in module src.classic_algo.sort)

S

 	
 	selection_sort() (in module src.classic_algo.sort)

 	shell_sort() (in module src.classic_algo.sort)

 	
 	short_bubble_sort() (in module src.classic_algo.sort)

 	src.classic_algo.sort (module)

Install

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Indices and tables

 		
 Welcome to Pythonic Interviews

 		
 Features

 		
 Philosophy

 		
 Testing

 		
 Contributing

 		
 License

 		
 Definitions

 		
 Class

 		
 Object

 		
 Sorting Algorithms

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

